
High Availability for Cacti

Author: Fausto Vetter @ DANTE / GÉANT (www.dante.net / www.geant.net)

This document describes a deployment of CACTI on high availability and load

balancing mode. CACTI will be sharing the monitoring activity among the active

nodes on the monitoring cluster. This setup is recommended for environments either

requiring a high level of availability or when the number of monitored devices is high.

In this document, two servers located on distinct networks were used. The final setup

looks like the picture below:

CACTI (S1) CACTI (S2)

SQL

(S1)

SQL

(S2)

RRD Area (S1) RRD Area (S2)

Network

The monitoring environment consist of a synchronized shared hard disk space, a

master-master MySQL implementation and two instances of Cacti running on two

separated Apache2 servers. In the end, the user has the feeling of running Cacti on its

normal way, but gets the benefit of sharing the load and possibility to scale the

monitoring as the environment grows.

Requirements

Hardware requirements:

- Two physical servers

Software requirements:

- Linux Operating System

- MySQL 5.x

- Unison

- SSH

- Apache2 Server

- RRDTool

- PHP 5

- Cacti 0.8.7e (patched)

- Cacti 0.8.7e plugin architecture

- Cacti 0.8.7e cluster architecture

Important Note: All the steps of this procedure should be undertaken using a normal

user account and were accomplished under RedHat Enterprise (RHEL) 4 and 5.

Whenever relevant on this procedure, both systems will be distinctly identified. This

procedure can serve as the basis for other Linux implementations.

Installation Procedure

Linux Operating system installation is out of the scope of this document. It is

expected that both systems are configured and running.

Requirements Installation

SSH Tunnel

This procedure should be undertaken on both servers. It is expected that SSH Server

is pre-installed on both servers and allowing authentication using keys. Follow the

next steps to configure the SSH tunnel between both servers:

1) Go to user’s home folder: cd ~/

2) Create .keys folder: mkdir .keys

3) Create a password-free key pair running ssh-keygen -t dsa and storing them in

the following path ~/.keys/cacti-[other_host]:

Generating public/private dsa key pair.

Enter file in which to save the key (/home/[username]/.ssh/id_dsa):

/home/[username]/.keys/cacti-[other-hostname]

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/[username]/.keys/cacti-

[hostname].

Your public key has been saved in /home/[username]/.keys/cacti-

[hostname].pub.

The key fingerprint is:

de:c8:71:2b:52:cc:49:f0:8a:34:6b:30:d9:76:fa:ff

4) Add the content of the ~/.keys/cacti-[hostname].pub to the

~/.ssh/authorized_keys file of other host

5) Test the connection between the hosts adding the other host to the known

hosts list:

/usr/bin/ssh -i ~/.keys/cacti-[hostname] [username]@[other_hostname]

Unison

Unison is the software package used to synchronize folders among both servers and

simulate a shared storage for the RRD files generated by Cacti. It was developed

using OCAML interpreter. This tool is similar to the well-known RSync, keeping the

files updated based on files’ differences. The big difference to RSync is that it detects

and merges changes done on both directions, keeping both sides updated to the latest

files versions from either server.

OCAML Interpreter

This procedure should be undertaken on both servers. Follow the next steps to

compile the OCAML interpreter:

1) Uncompress the downloaded file: tar xvfz ocaml-3.11.1.tar.gz

2) Move to the created folder: cd ocaml-3.11.1

3) Prepare the compilation process: ./configure

4) Compile the interpreter: make world

5) Compile the interpreter for the hardware platform: make opt

6) Install the interpreter: sudo make install

Unison Synchronization Software

This procedure should be undertaken on both servers. Follow the next steps to

compile Unison:

1) Uncompress the downloaded file: tar xvfz unison-2.32.52.tar.gz

2) Go to the created folder: cd unison-2.32.52

3) Compile Unison: make UISTYLE=text

4) Copy the generated binary file to a PATH folder sudo cp ./unison /usr/bin

5) Test Unison Connection by running the following commands (before testing,

create a testing folder on both servers such as ~/unison-test):

unison /home/[username]/unison-test --sshargs ‘[path-to-key]’

ssh://[hostname-other-server]//home/[username]/unison-test -batch

MySQL

Note: This procedure was followed only on RHEL 4 system, since RHEL5 had

MySQL5 installed. Basically, to install MySQL 5 under RHEL 5, the user can use the

yum package repository available from RedHat.

1) Verify if any mysql older packages are currently installed: rpm -qa | grep -i

'^mysql-'

2) Remove mysql database folder: sudo rm -rf /var/lib/mysql/mysql/

3) Remove all existing mysql packages… --nodeps option might be required

4) Install the shared libraries: sudo rpm -ivh MySQL-shared-community-

5.1.40-0.rhel4.x86_64.rpm

5) Install the compatibility shared libraries: sudo rpm -Uvh MySQL-shared-

compat-5.1.40-0.rhel4.x86_64.rpm

6) Install MySQL5 server: sudo rpm -ivh MySQL-server-community-5.1.40-

0.rhel4.x86_64.rpm

7) Install MySQL5 client: sudo rpm -ivh MySQL-client-community-5.1.40-

0.rhel4.x86_64.rpm

8) Install MySQL5 developer library: sudo rpm -ivh MySQL-devel-

community-5.1.40-0.rhel4.x86_64.rpm

9) Add MySQL on the service list: sudo /sbin/chkconfig -add mysql

10) Change the startup configuration of MySQL: sudo /sbin/chkconfig –level

2345 mysql on

11) Set port 3307 on /etc/my.cnf (port = 3307)

12) Set Selinux enforce rules to Permissive (sudo /usr/sbin/setenforce

Permissive)

13) Set Selinux enforce rules to Permissive on startup of server (edit

/etc/selinux/config file and change SELINUX option to

SELINUX=permissive)

14) Start MySQL if service wasn’t started yet: sudo /sbin/service mysql start

15) Change MySQL password: sudo mysqladmin password [password]

Note: Since on our RHEL5 server there was already an instance of MySQL running

and also doing replication, it was decided to implement a second instance of MySQL

running on port 3307.

To configure a new process for running MySQL on port 3307, follow the next steps:

1) Create a new username for the new MySQL: sudo /usr/sbin/adduser -r -m -d

/var/lib/mysql-cacti mysql-cacti

2) Create the folder MySQL will use to store running files such as the PID file:

sudo mkdir /var/run/mysqld-cacti

3) Change the ownership of this folder to the created user: sudo chown mysql-

cacti.mysql-cacti /var/run/mysqld-cacti

4) Create the folder MySQL will use for logging: sudo mkdir /var/log/mysql-

cacti

5) Change the ownership of this folder to the created user: sudo chown mysql-

cacti.mysql-cacti /var/log/mysql-cacti

6) Create the initialization script for the new instance creating the following file

/etc/init.d/mysqld-cacti and adding the following content to it:

#!/bin/bash

mysqld This shell script takes care of starting and stopping

the MySQL subsystem (mysqld).

chkconfig: - 64 36

description: MySQL database server.

processname: mysqld

config: /etc/my-$prefix.cnf

pidfile: /var/run/mysqld-$prefix/mysqld.pid

Source function library.

. /etc/rc.d/init.d/functions

Source networking configuration.

. /etc/sysconfig/network

prog="MySQL"

prefix="cacti"

config_file=/etc/my-$prefix.cnf

extract value of a MySQL option from config files

Usage: get_mysql_option SECTION VARNAME DEFAULT

result is returned in $result

We use my_print_defaults which prints all options from multiple

files,

with the more specific ones later; hence take the last match.

get_mysql_option(){

 result=`/usr/bin/my_print_defaults --defaults-

file="$config_file" "$1" | sed -n "s/^--$2=//p" | tail -n 1`

 if [-z "$result"]; then

 # not found, use default

 result="$3"

 fi

}

get_mysql_option mysqld datadir "/var/lib/mysql-$prefix"

datadir="$result"

get_mysql_option mysqld socket "$datadir/mysql.sock"

socketfile="$result"

get_mysql_option mysqld_safe log-error "/var/log/mysqld-$prefix.log"

errlogfile="$result"

get_mysql_option mysqld_safe pid-file "/var/run/mysqld-

$prefix/mysqld.pid"

mypidfile="$result"

start(){

 touch "$errlogfile"

 chown mysql-$prefix:mysql-$prefix "$errlogfile"

 chmod 0640 "$errlogfile"

 [-x /sbin/restorecon] && /sbin/restorecon "$errlogfile"

 if [! -d "$datadir/mysql"] ; then

 action $"Initializing MySQL database: "

/usr/bin/mysql_install_db --defaults-file="$config_file" --

datadir="$datadir" --user=mysql-$prefix

 ret=$?

 chown -R mysql-$prefix:mysql-$prefix "$datadir"

 if [$ret -ne 0] ; then

 return $ret

 fi

 fi

 chown mysql-$prefix:mysql-$prefix "$datadir"

 chmod 0755 "$datadir"

 # Pass all the options determined above, to ensure consistent

behavior.

 # In many cases mysqld_safe would arrive at the same

conclusions anyway

 # but we need to be sure.

 /usr/bin/mysqld_safe --defaults-file="$config_file" --

datadir="$datadir" --socket="$socketfile" \

 --log-error="$errlogfile" --pid-file="$mypidfile" \

 --user=mysql-$prefix >/dev/null 2>&1 &

 ret=$?

 # Spin for a maximum of N seconds waiting for the server to

come up.

 # Rather than assuming we know a valid username, accept an

"access

 # denied" response as meaning the server is functioning.

 if [$ret -eq 0]; then

 STARTTIMEOUT=30

 while [$STARTTIMEOUT -gt 0]; do

 RESPONSE=`/usr/bin/mysqladmin --defaults-

file="$config_file" --socket="$socketfile" --user=UNKNOWN_MYSQL_USER

ping 2>&1` && break

 echo "$RESPONSE" | grep -q "Access denied for user"

&& break

 sleep 1

 let STARTTIMEOUT=${STARTTIMEOUT}-1

 done

 if [$STARTTIMEOUT -eq 0]; then

 echo "Timeout error occurred trying to start

MySQL Daemon."

 action $"Starting $prog: " /bin/false

 ret=1

 else

 action $"Starting $prog: " /bin/true

 fi

 else

 action $"Starting $prog: " /bin/false

 fi

 [$ret -eq 0] && touch /var/lock/subsys/mysqld-$prefix

 return $ret

}

stop(){

 MYSQLPID=`cat "$mypidfile" 2>/dev/null `

 if [-n "$MYSQLPID"]; then

 /bin/kill "$MYSQLPID" >/dev/null 2>&1

 ret=$?

 if [$ret -eq 0]; then

 STOPTIMEOUT=60

 while [$STOPTIMEOUT -gt 0]; do

 /bin/kill -0 "$MYSQLPID" >/dev/null 2>&1 || break

 sleep 1

 let STOPTIMEOUT=${STOPTIMEOUT}-1

 done

 if [$STOPTIMEOUT -eq 0]; then

 echo "Timeout error occurred trying to stop MySQL

Daemon."

 ret=1

 action $"Stopping $prog: " /bin/false

 else

 rm -f /var/lock/subsys/mysqld-$prefix

 rm -f "$socketfile"

 action $"Stopping $prog: " /bin/true

 fi

 else

 action $"Stopping $prog: " /bin/false

 fi

 else

 ret=1

 action $"Stopping $prog: " /bin/false

 fi

 return $ret

}

restart(){

 stop

 start

}

condrestart(){

 [-e /var/lock/subsys/mysqld-$prefix] && restart || :

}

See how we were called.

case "$1" in

 start)

 start

 ;;

 stop)

 stop

 ;;

 status)

 status mysqld-$prefix

 ;;

 restart)

 restart

 ;;

 condrestart)

 condrestart

 ;;

 *)

 echo $"Usage: $0 {start|stop|status|condrestart|restart}"

 exit 1

esac

exit $?

7) Change the permissions of the file: sudo chmod 755 /etc/init.d/mysqld-cacti

8) Create a new configuration file to MySQL (/etc/my-cacti.cnf) and add the

following content to it:

[mysqld]

port=3307

datadir=/var/lib/mysql-cacti

socket=/var/lib/mysql-cacti/mysql.sock

old_passwords=1

[mysqld_safe]

log-error=/var/log/mysqld-cacti.log

pid-file=/var/run/mysqld-cacti/mysqld.pid

timezone = Etc/GMT

9) Add the new service to the known service list: sudo /sbin/chkconfig --add

mysqld-cacti

10) Configure the service to start on boot:

a. Enter the Setup tool: sudo setup

b. Go to System services

c. Choose [*] mysqld-cacti service on the list

d. Go to OK

e. And exit going to Quit

11) Start the service: sudo /sbin/service mysqld-cacti start

12) Change the MySQL root user’s password for this new instance: mysqladmin -

S /var/lib/mysql-cacti/mysql.sock password [password]

HTTP Server

Both servers had HTTP Apache 2 service installed. The only procedure was to start

both servers: sudo /sbin/service httpd start

Also, do not forget to change the firewall changing the file /etc/sysconfig/iptables

and adding the following rule:

-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 80

-j ACCEPT

Finally, restart the service: sudo /sbin/service iptables restart

On the RHEL4, HTTP wasn’t configured to start at the system boot. To configure this

feature run the following command: sudo /sbin/chkconfig --level 2345 httpd on

RRDTool

This procedure should be undertaken on both servers. The procedures for installing

RRDTool are:

1) Install required libraries and tools using yum for RHEL5 and rpm –ivh for

RHEL4:

a. GCC compiler: gcc.x86_64

b. PCKConfig tool: pkgconfig.x86_64

c. Libart development library: libart_lgpl-devel.x86_64

d. ZLib development library: zlib-devel.x86_64

e. LibPNG development library: libpng-devel.x86_64

f. Freetype development library: freetype-devel.x86_64

2) Go to /opt folder: cd /opt/

3) Download the latest RRDTool 1.2.27 package: wget

http://oss.oetiker.ch/rrdtool/pub/rrdtool-1.2.27.tar.gz

4) Uncompress RRDTool package: tar xvfz rrdtool-1.2.27.tar.gz

5) Change folder to the recently created RRDTool folder: cd rrdtool-1.2.27

6) Create the configuration file to compile RRDTool: sh configure [--disable-

ruby]

7) Compile RRDTool: make

8) Install RRDTool: sudo make install

9) Move the binary files to the PATH folder: sudo cp /usr/local/rrdtool-

1.2.27/bin/* /usr/bin

PHP 5 and Libraries

On RHEL5 system, use yum and install the following packages: php.x86_64, php-

mysql.x86_64, net-snmp-utils.x86_64 and php-snmp.x86_64.

On RHEL4, find PHP and its packages at

http://www.cyberciti.biz/files/lighttpd/rhel4-php5-fastcgi/ and install the following

packages:

sudo rpm --nodeps -Uvh php-5.1.4-1.esp1.x86_64.rpm

sudo rpm -Uvh php-ldap-5.1.4-1.esp1.x86_64.rpm

sudo rpm -ivh php-pdo-5.1.4-1.esp1.x86_64.rpm

sudo rpm -ivh php-mysql-5.1.4-1.esp1.x86_64.rpm

On RHEL4, install Net-SNMP using the version 5.1.2-18 using the comand rpm –ivh

[package_name]: net-snmp-5.1.2-18.el4.x86_64.rpm, net-snmp-devel-5.1.2-

18.el4.x86_64.rpm, net-snmp-libs-5.1.2-18.el4.x86_64.rpm, net-snmp-perl-5.1.2-

18.el4.x86_64.rpm, net-snmp-utils-5.1.2-18.el4.x86_64.rpm and php-snmp-5.1.4-

1.esp1.x86_64.rpm.

Cacti Installation

This procedure should be undertaken on both servers. The procedures for installing

Cacti are:

1) Go to /opt folder: cd /opt

2) Download Cacti: wget http://www.cacti.net/downloads/cacti-0.8.7e.tar.gz

3) Uncompress Cacti package: sudo tar xvfz cacti-0.8.7e.tar.gz

4) Create a logical link to the folder created: sudo ln -s /opt/cacti-0.8.7e

/opt/cacti

5) Change user ownership of /opt/cacti to username: sudo chown -R

[username].[group] /opt/cacti

6) Change user ownership of /opt/cacti-0.8.7e to username: sudo chown -R

[username].[username] /opt/cacti-0.8.7e

7) Change folder to /opt/cacti: cd /opt/cacti

8) Create MySQL database for CACTI: mysqladmin [-S /var/lib/mysql-

cacti/mysql.sock] --user=root -p create cacti

9) Import CACTI tables to the database: mysql [-S /var/lib/mysql-

cacti/mysql.sock] --user=root -p cacti < cacti.sql

10) Create Cacti database username and password:

a. Connect to database: mysql [-S /var/lib/mysql-cacti/mysql.sock] --

user=root -p mysql

b. Create username and password: GRANT ALL ON cacti.* TO

cactiuser@localhost IDENTIFIED BY '[password]';

c. Refresh the configuration: FLUSH PRIVILEGES;

d. Exit MySQL client: exit

11) Edit include/config.php file and define the $database_password variable to

the database password connection defined. E.g.: $database_password =

"password"

12) Edit user crontab table running crontab -e adding the following line to it:

*/5 * * * * /usr/bin/php /opt/cacti/poller.php > /dev/null 2>&1

13) Move CACTI log folder and create the logrotate file:

a. Move CACTI logging folder to system log folder: sudo mv

/opt/cacti/log /var/log/cacti

b. Create a symbolic link pointing to CACTI system logging folder in

place of CACTI logging folder: sudo ln -s /var/log/cacti /opt/cacti/log

c. Change permissions on the logs symbolic link: sudo chown -h -R

[username].[group] /opt/cacti/log

d. Give permissions to username on the logging folder: sudo chown -R

[username].[group] /var/log/cacti

e. Create logrotate configuration file (sudo vi /etc/logrotate.d/cacti) file

adding the following content to it:

/var/log/cacti/cacti.log {

 missingok

 compress

 notifempty

 size 10M

 postrotate

 endscript

 rotate 5

 create 0600 sd sd

}

14) Create CACTI alias on Apache by creating sudo vi

/etc/httpd/conf.d/cacti.conf file and adding the following content to it:

Alias /cacti "/opt/cacti"

<Directory "/opt/cacti">

 Options Indexes MultiViews

 AllowOverride None

 Order deny,allow

 Allow from all

 Deny from all

</Directory>

15) Restart your web-server running the following command: sudo /sbin/service

httpd restart

16) Point your web-browser to http://A.B.C.D/cacti/, where A.B.C.D is the server

address;

17) Follow the installation screens, observing the following:

a. Choose Installation Type as New Install

b. Make sure CACTI find all required applications on the path

c. After finishing installation, access CACTI using username admin and

password admin, then change the admin password as you wish

Preparing Cacti to Run under Cluster Mode

The first desirable step is to make sure Cacti can run under Cluster Mode. Since any

Cacti comes with the device localhost registered, so it is recommended that the user

removes this instance on both servers to allow misinterpretation while running on

cluster mode. Follow the next steps on both servers to prepare Cacti:

1) Connect as admin in the web interface of Cacti

2) Under Management tab, go to Devices

3) Check localhost device

4) Select Delete on Choose an action: and press OK

5) Confirm that you want to delete this device and you may logout the web

interface for the moment

6) Connect the server using SSH using username running Cacti

7) Go to /opt/cacti/rra: cd /opt/cacti/rra

8) Delete all RRD files: rm *.rrd

Configure Synchronization of Cacti RRA Folder

Follow these steps on both servers to configure Unison to synchronize:

1) Create the script ~/scripts/sync.sh adding the following content:

#!/bin/bash

/bin/sleep [time]

#/usr/bin/unison /var/lib/php/session -sshargs '-i

/home/[username]/.keys/cacti-[other_hostname]'

ssh://[other_hostname]//var/lib/php/session -batch

/usr/bin/unison /opt/cacti/rra -sshargs '-i

/home/[username]/.keys/cacti-[other_hostname]'

ssh://[other_hostname]//opt/cacti/rra -batch -times -force newer

* The only thing different beside [username] and [other_hostname] is [time], which

on the RHEL5 was defined as 1m (1 minute) and on the RHEL4 as 3m (3 minutes)

2) Change the permissions on the file: chmod 755 ~/scripts/sync.sh;

3) Edit crontab (crontab -e) adding the following:

*/5 * * * * /home/[username]/scripts/sync.sh > /dev/null 2>&1

PS: /var/lib/php/session in this instance was commented out once the machines are

not running on active failover, so they do not need to share the session information of

the Apache server. If this is the case for another implementation, just uncomment this

like on the user crontab.

Configure MySQL to run on Master-Master Mode

Once both Cacti systems are setup, running and sharing the same RRA folders, now is

time to configure MySQL to run on Master-Master mode. Follow the next steps to

configure the Master-Master mode:

1) Connect on both servers and create the replication user for the MySQL:

a. Connect to the MySQL: mysql [-S /var/lib/mysql-cacti/mysql.sock] -

-user=root -p

b. Run the following query on both servers:

GRANT REPLICATION SLAVE ON *.* TO 'slave'@'[other_host_ip]'

IDENTIFIED BY '[slavepass]';

FLUSH PRIVILEGES;

quit;

Change firewall settings to ensure each MySQL server can connect to the other one

by adding to iptables configuration file (/etc/sysconfig/iptables) the following

content before the firewall closure statement which rejects all the traffic (-A RH-

Firewall-1-INPUT -j REJECT --reject-with icmp-host-prohibited COMMIT):

-A RH-Firewall-1-INPUT -p tcp -m tcp -s [other_host_ip] --dport 3307

-j ACCEPT

2) Restart IP Tables (sudo /sbin/service iptables restart or /etc/init.d/iptables

restart) on both servers

3) Test the firewall by running a telnet to port 3307: telnet [other_hostname]

3307

4) Create the MySQL logging folder for both systems:

a. For RHEL4, create the folder MySQL (sudo mkdir /var/log/mysql)

and change its ownership (sudo chown mysql.mysql /var/log/mysql)

b. For RHEL5, create the folder MySQL (sudo mkdir /var/log/mysql-

cacti) and change its ownership (sudo chown mysql-cacti.mysql-

cacti /var/log/mysql-cacti)

5) Change the MySQL configuration file of the RHEL5 system (/etc/my-

cacti.cnf) and make sure it has the following content:

[mysqld]

server-id = 10

port=3307

replicate-same-server-id = 0

auto-increment-increment = 2

auto-increment-offset = 2

#master-host = [other_hostname]

#master-port = 3307

#master-user = slave

#master-password = [master_password]

#master-connect-retry = 60

replicate-do-db = cacti

log-bin = /var/log/mysql-cacti/mysql-bin.log

binlog-do-db = cacti

relay-log = /var/lib/mysql-cacti/slave-relay.log

relay-log-index = /var/lib/mysql-cacti/slave-relay-log.index

expire_logs_days = 10

max_binlog_size = 500M

datadir=/var/lib/mysql-cacti

socket=/var/lib/mysql-cacti/mysql.sock

old_passwords=1

[mysqld_safe]

log-error=/var/log/mysqld-cacti.log

pid-file=/var/run/mysqld-cacti/mysqld.pid

timezone = Etc/GMT

6) Restart MySQL: sudo /sbin/service mysqld-cacti restart

7) Change the MySQL configuration file of the RHEL4 system (/etc/my.cnf)

and make sure it has the following content:

[mysqld]

server-id=20

port = 3307

datadir=/var/lib/mysql

socket=/var/lib/mysql/mysql.sock

old_passwords=1

master-host = [other_hostname]

master-user = slave

master-port = 3307

master-password = [master_password]

replicate-same-server-id = 0

auto-increment-increment = 2

auto-increment-offset = 1

replicate-do-db = cacti

log-bin = /var/log/mysql/mysql-bin.log

binlog-do-db = cacti

relay-log = /var/lib/mysql/slave-relay.log

relay-log-index = /var/lib/mysql/slave-relay-log.index

expire_logs_days = 10

max_binlog_size = 500M

[mysqld_safe]

log-error=/var/log/mysqld.log

pid-file=/var/run/mysqld/mysqld.pid

timezone = Etc/GMT

8) Restart MySQL: sudo /sbin/service mysqld restart

9) Import RHEL5 database into RHEL4 database by following the next steps:

a. Connect to mysql: mysql [-S /var/lib/mysql-cacti/mysql.sock] --

user=root –p

b. Lock the tables:

USE cacti;

FLUSH TABLES WITH READ LOCK;

quit;

c. Create a dump: cd /tmp/ && mysqldump -S /var/lib/mysql-

cacti/mysql.sock -u root –p --opt cacti > cactidump.sql

d. Connect to mysql (mysql [-S /var/lib/mysql-cacti/mysql.sock] --

user=root –p) and unlock the tables:

UNLOCK TABLES;

quit;

e. Transfer the dump to /tmp folder on the RHEL4 system;

f. On RHEL4, import the dump running the following commands:

mysqladmin [–S /var/lib/mysql/mysql.sock] --user=root -p stop-slave

cd /tmp/

mysql [–S /var/lib/mysql/mysql.sock] -u root –p cacti <

cactidump.sql

10) Go to HREL5 system, connect to mysql (mysql [-S /var/lib/mysql-

cacti/mysql.sock] --user=root -p) and configure to run as a slave:

stop slave;

flush logs;

reset slave;

start slave;

11) Verify its master status:

USE cacti;

FLUSH TABLES WITH READ LOCK;

SHOW MASTER STATUS\G;

12) Take note of File and Position from last command and reset the master on the

system:

mysql> CHANGE MASTER TO MASTER_HOST='[other_hostname]',

MASTER_USER='[master_user]', MASTER_PASSWORD='[master_pass]',

MASTER_LOG_FILE='[master_log_file]',

MASTER_LOG_POS=[master_log_position];

13) On HREL4 system, configure to run as a slave:

stop slave;

flush logs;

reset slave;

start slave;

14) On both systems, verify that both are running properly running on MySQL the

following:

SHOW SLAVE STATUS\G;

15) Check that both systems have Slave_IO_Running and Slave_SQL_Running

options set to Yes

16) Leave MySQL on both systems: quit

If everything have gone fine, master-master replication should be working. Check

your logs on both systems if you encounter problems.

Cacti Plugin Architecture

This procedure should be undertaken on both servers. The procedures for installing

Cacti Plugin Architecture are:

1) Extract the plugin architecture file on /opt/cacti folder: tar -zvxf cacti-plugin-

arch.tar.gz

2) Test the patch: patch -p1 -N --dry-run < cacti-plugin-arch.diff

3) If everything goes fine, patch the code: patch -p1 -N < cacti-plugin-arch.diff

4) On [cacti_path]/include/global.php, change the variable $config['url_path']

to:

$config['url_path'] = "/cacti/";

5) On only one of the servers, import the Plugin Architecture database: mysql [-S

/var/lib/mysql-cacti/mysql.sock] --user=root -p cacti < pa.sql

6) Connect as admin to one of the web-interfaces of Cacti and enable the Plugin

Architecture for the admin user:

a. Under Utilities tab, go to User Management

b. Click on admin user

c. Under Realm Permissions tab, check Plugin Management

d. Click on Save button

Setup Cacti for Cluster Mode

This procedure should be undertaken on both servers. The procedures for preparing

Cacti to run on cluster mode are:

1) Make sure Cacti is patch with the following available patches:

patch -p1 -N < cli_add_graph.patch

patch -p1 -N < snmp_invalid_response.patch

patch -p1 -N < template_duplication.patch

patch -p1 -N < fix_icmp_on_windows_iis_servers.patch

2) Patch Cacti with the cluster infrastructure: patch -p1 -N < cacti-0.8.7e-

clustered.diff

3) On only one of the servers, connect to MySQL (mysql [-S /var/lib/mysql-

cacti/mysql.sock] --user=root –p) and run the following commands:

CREATE TABLE `cluster_nodes` (

 `uid` mediumint(8) unsigned NOT NULL AUTO_INCREMENT,

 `cluster_status` varchar(32) DEFAULT NULL,

 `uptime` varchar(255) DEFAULT NULL,

 `cluster_order` varchar(3) DEFAULT NULL,

 `hostname` varchar(32) DEFAULT NULL,

 `ipadd` varchar(32) DEFAULT NULL,

 PRIMARY KEY (`uid`)

) ENGINE=MyISAM AUTO_INCREMENT=3 DEFAULT CHARSET=latin1;

insert into plugin_realms(plugin, file, display)

values("cluster","cluster.php","Cacti Cluster");

7) Change permissions on the session folder of Apache to enable your username

to have access: sudo chmod 775 /var/lib/php/session

8) Add the apache group to your username: sudo /usr/sbin/usermod -a -G

apache [username]

9) Setup the crontab (crontab -e) on both servers for heartbeat check of the

cluster:

* * * * * /usr/bin/php /opt/cacti/check_cluster.http.php

10) Connect as admin to one of the web-interfaces of Cacti and enable the Cluster

Mode for the admin user:

a. Under Utilities tab, go to User Management

b. Click on admin user

c. Under Realm Permissions tab, check Cacti Cluster

d. Click on Save button

11) Add the cluster nodes on the Cacti:

a. Under Configuration, go to Cluster

b. Add the cluster nodes, by setting for each one the hostname (it has to

be the same string that appear after typing the hostname command on

each server) and IP address, and pressing the Add button

c. Wait until cluster_status, cron, mysql and httpd background colour

changes to green for both nodes

