
Data Queries
Data queries are not a replacement for data input methods in Cacti. Instead they provide an
easy way to query, or list data based upon an index, making the data easier to graph. The
most common use of a data query within Cacti is to retrieve a list of network interfaces via
SNMP. If you want to graph the traffic of a network interface, first Cacti must retrieve a list of
interfaces on the host. Second, Cacti can use that information to create the necessary graphs
and data sources. Data queries are only concerned with the first step of the process, that is
obtaining a list of network interfaces and not creating the graphs/data sources for them. While
listing network interfaces is a common use for data queries, they also have other uses such as
listing partitions, processors, or even cards in a router.

One requirement for any data query in Cacti, is that it has some unique value that defines
each row in the list. This concept follows that of a 'primary key' in SQL, and makes sure that
each row in the list can be uniquely referenced. Examples of these index values are 'ifIndex'
for SNMP network interfaces or the device name for partitions.

There are two types of data queries that you will see referred to throughout Cacti. They are
script queries and SNMP queries. Script and SNMP queries are virtually identical in their
functionality and only differ in how they obtain their information. A script query will call an
external command or script and an SNMP query will make an SNMP call to retrieve a list of
data.

All data queries have two parts, the XML file and the definition within Cacti. An XML file must
be created for each query, that defines where each piece of information is and how to retrieve
it. This could be thought of as the actual query. The second part is a definition within Cacti,
which tells Cacti where to find the XML file and associates the data query with one or more
graph templates.

Creating a Data Query

Once you have created the XML file that defines your data query, you must add the data query
within Cacti. To do this you must click on Data Queries under the Data Gathering heading, and
select Add. You will be prompted for some basic information about the data query, described
in more detail below.

Table 12-1. Field Description: Data Queries

Name Description

Name
Give the data query a name that you will use to identify it. This name will be
used throughout Cacti when presented with a list of data queries.

Description
(Optional) Enter a more detailed description of the data query including the
information it queries or additional requirements.

XML Path
Fill in the full path to the XML file that defines this query. You can optionally
use the <path_cacti> variable that will be substituted with the full path to
Cacti. On the next screen, Cacti will check to make sure that it can find the

Data Queries - Cacti Docs http://docs.cacti.net/doku.php?id=manual:088:3a_a...

1 von 10 18.11.2009 21:50

XML file.

Data Input
Method

This is how you tell Cacti to handle the data it receives from the data query.
Typically, you will select “Get SNMP Data (Indexed)” for an SNMP query and
“Get Script Data (Indexed)” for a script query.

When you are finished filling in all necessary fields, click the Create button to continue. You
will be redirected back to the same page, but this time with some additional information to fill
in. If you receive a red warning that says 'XML File Does Not Exist', correct the value
specified in the 'XML Path' field.

Associated Graph Templates

Every data query must have at least one graph template associated with it, and possibly more
depending on the number of output fields specified in the XML file. This is where you get to
choose what kind of graphs to generate from this query. For instance, the interface data query
has multiple graph template associations, used to graph traffic, errors, or packets. To add a
new graph template association, simply click Add at the right of the Associated Graph
Templates box. You will be presented with a few fields to fill in:

Table 12-2. Field Description: Associated Graph Templates

Name Description

Name
Give a name describing what kind of data you are trying to represent or graph.
When the user creates a graph using this data query, they will see a list of graph
template associations that they will have to choose from.

Graph
Template

Choose the actual graph template that you want to make the association with.

When you are finished filling in these fields, click the Create button. You will be redirected
back to the same page with some additional information to fill in. Cacti will make a list of
each data template referenced to in your selected graph template and display them under the
Associated Data Templates box. For each data source item listed, you must selected the data
query output field that corresponds with it. Do not forget to check the checkbox to the
right of each selection, or your settings will not be saved.

The Suggested Values box gives you a way to control field values of data sources and graphs
created using this data query. If you specify multiple suggested values for the same field,
Cacti will evaluate them in order which you can control using the up or down arrow icons. For
more information about valid field names and variables, read the section on suggested values.

When you are finished filling in all necessary fields on this form, click the Save button to
return to the data queries edit screen. Repeat the steps under this heading as many times as
necessary to represent all data in your XML file. When you are finished with this, you should
be ready to start adding your data query to hosts.

SNMP Query XML Syntax

Data Queries - Cacti Docs http://docs.cacti.net/doku.php?id=manual:088:3a_a...

2 von 10 18.11.2009 21:50

<query>
 <name>Get SNMP Interfaces</name>
 <description>Queries a host for a list of monitorable interfaces</description>
 <oid_uptime>.1.3.x.x.x</oid_uptime>
 <oid_index>.1.3.6.1.2.1.2.2.1.1</oid_index>
 <oid_index_parse>OID/REGEXP:.*\.([0-9]{1,3}\.[0-9]{1,3})$</oid_index_parse>
 <oid_num_indexes>.1.3.6.1.2.1.2.1.0</oid_num_indexes>
 <index_order>ifDescr:ifName:ifIndex</index_order>
 <index_order_type>numeric</index_order_type>
 <index_title_format>|chosen_order_field|</index_title_format>
 <fields>
 <ifIndex>
 <name>Index</name>
 <method>walk</method>
 <source>value</source>
 <direction>input</direction>
 <oid>.1.3.6.1.2.1.2.2.1.1</oid>
 </ifIndex>
 </fields>
</query>

Table 12-3. SNMP Query XML Field Reference

Field Description

query→name
(Optional) You can enter a “friendly name” for the SNMP
query here. It will not be used by Cacti, and is for
identification only.

query→description
(Optional) You can enter a description for the SNMP query
here. It will not be used by Cacti, and is for identification
only.

query→oid_uptime

(Optional, new with 0.8.7): If you have another OID that
contains timetics, say for example a Java VM. Then, you can
create a data query that specifies an alternate Uptime OID.
To implement this for a data query, simply add the
oid_uptime XML parameter to your XML file. Then, if you
select your re-index method to be Uptime Goes Backaward,
Cacti will use that OID to detect whether it is time to re-index
the host instead of the standard snmp OID for uptime.

query→oid_index

Every SNMP query must have an OID that represents the
index values for the query when walked. As described above,
any data query in Cacti must contain a field that uniquely
identifies each row returned by the query. In the example
above, the oid_index points to the OID of ifIndex in the
interface MIB.
Note: Starting with version 0.8.6c, Cacti is able to parse
unique indexes from the OID itself. While the regular
expression used for parsing the value from the OID is
defined below, you must still specify an OID that can be
walked by Cacti in order to obtain the list of OID's. Any OID
defined for one of your input fields should work in this case.
The values returned from the snmpwalk walk will be
completely disregarded.

Data Queries - Cacti Docs http://docs.cacti.net/doku.php?id=manual:088:3a_a...

3 von 10 18.11.2009 21:50

query→oid_index_parse

(Optional) This field should only be used if you are trying to
parse the unique index from the OID itself. If this field is
defined, to obtain a list of indexes, Cacti walks the OID
provided in the oid_index field above. It then applies the
regular expression provided in this field to the list of OID's
that are returned. The matched substrings that remain
become the list of indexes for this SNMP query.

query→oid_num_indexes

(Optional)
[Re-Index Method = Index Count Changed]
An OID that can be queried to determine the total number
of available indexes. If specified, this will be used to
determine when to automatically recache this SNMP query
when it is attached to a device.
[Re-Index Method = Index Value Changed (new since
0.8.8)]
In this case, the <oid_num_index> value is taken to
determine if a re-index is required.

query→index_order

(Optional) As of version 0.8.6, Cacti will attempt to find the
best field to index off of based on whether each row in the
query is unique and non-null. If specified, Cacti will perform
this check on the fields listed here in the order specified.
Only input fields can be specified and multiple fields should
be delimited with a colon.

query→index_order_type

(Optional) For sorting purposes, specify whether the index is
numeric or alphanumeric.
numeric: The indexes in this SNMP query are to be sorted
numerically (ie. 1,2,3,10,20,31)
alphabetic: The indexes in this SNMP query are to be sorted
alphabetically (1,10,2,20,3,31).
natural: Introduced to handle IP address style data. Given
the dotted-quad representation of a network address as a
string, returns an integer that represents the numeric value
of the address to determine the sort order.

query→index_title_format

(Optional) Specify the title format to use when representing
an index to the user. Any input field name can be used as a
variable if enclosed in pipes (|). The variable
"|chosen_order_field|" will be substituted with the field
chosen by Cacti to index off of (see index_order above).

query→fields
Each field contained within the SNMP query must be defined
under this tag.

query→fields→ifIndex
Each defined field in the SNMP query must have a unique
name given to it. Do not use spaces or any non-alphanumeric
characters, this name must be identifiable within Cacti.

query→fields→ifIndex→name
Here you can specify a “friendly name” for the field. This
name will be used by Cacti to help the user identify this
field.

Data Queries - Cacti Docs http://docs.cacti.net/doku.php?id=manual:088:3a_a...

4 von 10 18.11.2009 21:50

query→fields→ifIndex→method

Tell Cacti how you want it to gather SNMP information for
this field.
get: The 'get' method obtains a list of indexes and does an
snmpget for each index of the OID specified for this field.
walk: The 'walk' method does a walk of the OID specified for
this field. Both methods will return the same values, even
though the 'walk' method is typically more efficient.

query→fields→ifIndex→source

When Cacti obtains a list for this field, you need to tell it
how to derive its value for each row.
value: The 'value' option simply returns the result of the
snmpget for each row.
OID/REGEXP:(regexp_match): The 'OID/REGEXP:
(regexp_match)' can be used when you need to use a
POSIX-based regular expression to derive the value from the
OID. The most common example of this is to retreive the IP
address of an interface, and can be seen in the
'interface.xml' file.
VALUE/REGEXP:(regexp_match): The 'OID/REGEXP:
(regexp_match)' option can be used to parse the value based
on a regular expression, returning the first match.”index”:
Simply use the value of the index for this row as the value. If
the index is being parsed from the OID using the
oid_index_parse field, you must specify “index” here.

query→fields→ifIndex→direction

input: Input values are the “known” values that you will use
to derive the output values, this is where the “query” part of
SNMP query comes in. When you create a graph based on an
SNMP query, Cacti will prompt you to choose the input value
to base the graph on.
output: Output values are “unknown” values that are
returned from the script. An SNMP query may return multiple
statistics for a single index. For instance, a single interface
could return bytes/sec in, errors, packets/sec, etc.A rule of
thumb is that input fields contain semi-static data that is not
graphable, while the output fields contain the data that will
be graphed.

query→fields→ifIndex→oid
You must specify the actual OID that corresponds with the
field. Each value for this field can be obtained by doing an
snmpget on 'oid.(each)snmpindex'.

query→fields→ <field> →
oid_suffix

(Optional, new with 0.8.7e)
In case you have to append a specific suffix to the OID for
your <field>, specify that suffix here. The complete OID for
that <field> then reads:
OID.<index>.<oid_suffix>

query→fields→ <field> →
rewrite_index

(Optional, new with 0.8.8)
rewrite_index overrides default way to build index of field for
SNMP GET query. When no rewrite_index value is specified,
Cacti uses the standard query-defined index <oid_index>.
As soon as <rewrite_index> is among properties of input

Data Queries - Cacti Docs http://docs.cacti.net/doku.php?id=manual:088:3a_a...

5 von 10 18.11.2009 21:50

field with method=get, Cacti will evaluate <rewrite_index>
as a clue to build index.
Let's assume that original index was $origindex
There are two kind of tokens:
|query_XXX| will be evaluated as value of XXX with index
$origindex
|index| == $origindex
So

<rewrite_index>|query_ifName|.33.|index|.|index|.2</rewrite_index>

will turn index into

{field_value['ifName'][$origindex]}.33.$origindex.$origindex.2

rewrite_index is quite useful when some query field is
actually key(index) of some other SNMP table. Fields that
are used in <rewrite_index> should be placed before this
field in XML in order to be able to translate |query_XXX| into
actual data. Simple example:

inventory table
index
X.1.1 = 1
X.1.2 = 2
X.1.3 = 3
item name
X.2.1 = "1000BaseSX SFP"
X.2.2 = "1000BaseSX SFP"
X.2.3 = "1000BaseSX SFP"
ifIndex
X.3.1 = 3002
X.3.2 = 3003
X.3.3 = 3004

interface table
index
Y.1.3002 = 3002
Y.1.3003 = 3003
Y.1.3004 = 3004
name
Y.2.3002 = "Gi0/1"
Y.2.3003 = "Gi0/1"
Y.2.3004 = "Gi0/1"

XML:

Data Queries - Cacti Docs http://docs.cacti.net/doku.php?id=manual:088:3a_a...

6 von 10 18.11.2009 21:50

<oid_index>X.1</oid_index>
<invname>
 <method>walk</method>
 <oid>X.2</oid>
</invname>
<invPifIndex>
 <method>get</method>
 <oid>X.3</oid>
</invPifIndex>
<ifName>
 <method>walk</method>
 <oid>Y.2</oid>
 <rewrite_index>|query_invPifIndex|</rewrite_index>
</ifName>

As a result each invname will be associated with ifName

query→fields→ <field> →
rewrite_value

(Optional, new with 0.8.8)
Serialized translation map for SNMP return values.
There are cases, where you might want to have SNMP ENUM
values printed in a more suitable way. An example is the use
of numeric representation of ifOperStatus in the interface
MIB.
IF-MIB defines

ifOperStatus OBJECT-TYPE
 SYNTAX INTEGER {
 up(1), -- ready to pass packets
 down(2),
 testing(3), -- in some test mode
 unknown(4), -- status can not be determined
 -- for some reason.
 dormant(5),
 notPresent(6), -- some component is missing
 lowerLayerDown(7) -- down due to state of
 -- lower-layer interface(s)
 }

which translates into a PHP array like this

$map = Array
(
 "REGEXPNC:^.*(up|1).*$" => "Up",
 "REGEXPNC:^.*(down|2).*$" => "Down",
 "REGEXPNC:^.*(testing|3).*$" => "Testing",
 "REGEXPNC:^.*(unknown|4).*$" => "Unknown",
 "REGEXPNC:^.*(dormant|5).*$" => "Dormant",
 "REGEXPNC:^.*(notPresent|6).*$" => "notPresent",
 "REGEXPNC:^.*(lowerLayerDown|7).*$" => "lowerLayerDown",
);

For use with <rewrite_value>, we need the serialize($map)
form of this array (split for sake of readability)

Data Queries - Cacti Docs http://docs.cacti.net/doku.php?id=manual:088:3a_a...

7 von 10 18.11.2009 21:50

a:7:{
s:21:"REGEXPNC:^.*(up|1).*$";s:2:"Up";
s:23:"REGEXPNC:^.*(down|2).*$";s:4:"Down";
s:26:"REGEXPNC:^.*(testing|3).*$";s:7:"Testing";
s:26:"REGEXPNC:^.*(unknown|4).*$";s:7:"Unknown";
s:26:"REGEXPNC:^.*(dormant|5).*$";s:7:"Dormant";
s:29:"REGEXPNC:^.*(notPresent|6).*$";s:10:"notPresent";
s:33:"REGEXPNC:^.*(lowerLayerDown|7).*$";s:14:"lowerLayerDown";}

Script Query XML Syntax

<query>
 <name>Get Unix Mounted Partitions</name>
 <description>Queries a list of mounted partitions on a unix-based host with the 'df' command.</description>
 <script_path>perl |path_cacti|/scripts/query_unix_partitions.pl</script_path>
 <arg_index>index</arg_index>
 <arg_query>query</arg_query>
 <arg_get>get</arg_get>
 <arg_num_indexes>num_indexes</arg_num_indexes>
 <output_delimeter>:</output_delimeter>
 <index_order>dskDevice:dskMount</index_order>
 <index_order_type>alphabetic</index_order_type>
 <index_title_format>|chosen_order_field|</index_title_format>
 <fields>
 <dskDevice>
 <name>Device Name</name>
 <direction>input</direction>
 <query_name>device</query_name>
 </dskDevice>
 </fields>
</query>

Table 12-4. Script Query XML Field Reference

Field Description

query→name
(Optional) You can enter a “friendly name” for the
script query here. It will not be used by Cacti, and is
for identification only.

query→description
(Optional) You can enter a description for the script
query here. It will not be used by Cacti, and is for
identification only.

query→script_path

Enter the complete path to the script or executable
that is going to handle your script query. When in
doubt, specify the pull path to all binaries referenced
in this path, the query may not execute otherwise.

query→arg_index
Enter the argument that is to be passed to the script to
retrieve a list of indexes.

query→arg_query
Enter the argument that is to be passed to the script to
retrieve a list of values given a field name.

query→arg_get
Enter the argument that is to be passed to the script to
retrieve a single value given a field name and index
value.

Data Queries - Cacti Docs http://docs.cacti.net/doku.php?id=manual:088:3a_a...

8 von 10 18.11.2009 21:50

query→arg_num_indexes

(Optional)
[Re-Index Method = Index Count Changed]
Enter the argument that is to be passed to the script to
determine the total number of available indexes. If
specified, this will be used to determine when to
automatically recache this script query when it is
attached to a device.
[Re-Index Method = Index Value Changed]
In this case, the <arg_num_index> value is taken to
determine if a re-index is required.

query→output_delimeter

Enter the one character delimiter that will be used to
separate output values. This is only used when you
“query” the script in which case it outputs
'index(delimiter)value'.

query→index_order

As of version 0.8.6, Cacti will attempt to find the best
field to index off of based on whether each row in the
query is unique and non-null. If specified, Cacti will
perform this check on the fields listed here in the
order specified. Only input fields can be specified and
multiple fields should be delimited with a comma.

query→index_order_type

For sorting purposes, specify whether the index is
numeric or alphanumeric.”numeric”: The indexes in
this script query are to be sorted numerically (ie.
1,2,3,10,20,31)“alphabetic”: The indexes in this script
query are to be sorted alphabetically (1,10,2,20,3,31).

query→index_title_format

Specify the title format to use when representing an
index to the user. Any input field name can be used as
a variable if enclosed in pipes (|). The variable
"|chosen_order_field|" will be substituted with the field
chosen by Cacti to index off of (see index_order
above).

query→fields
Each field contained within the script query must be
defined under this tag.

query→fields→dskDevice

Each defined field in the script query must have a
unique name given to it. Do not use spaces or any
non-alphanumeric characters, this name must be
identifiable within Cacti.

query→fields→dskDevice→name
Here you can specify a “friendly name” for the field.
This name will be used by Cacti to help the user
identify this field.

query→fields→dskDevice→direction

“input”: Input values are the “known” values that you
will use to derive the output values, this is where the
“query” part of script query comes in. When you create
a graph based on a script query, Cacti will prompt you
to choose the input value to base the graph
on.”output”: Output values are “unknown” values that
are returned from the script. A script query may return

Data Queries - Cacti Docs http://docs.cacti.net/doku.php?id=manual:088:3a_a...

9 von 10 18.11.2009 21:50

multiple statistics for a single index. For instance, a
single partition could return free disk space, total disk
space, fragmentation percentage, etc.A rule of thumb
is that input fields contain semi-static data that is not
graphable, while the output fields contain the data that
will be graphed.

query→fields→dskDevice→query_name

Enter the name that Cacti must use when asking the
script for information about this field. For instance,
the following should return values: '(script_name)
query (query_name)'.

 PHP Script Server manual SNMP Data Queries

Data Queries - Cacti Docs http://docs.cacti.net/doku.php?id=manual:088:3a_a...

10 von 10 18.11.2009 21:50

