Cacti High-availability symmetrical cluster/grid (revision 3).
Tested Versions: cacti 8.6j, cactid, Mysal 5.1, Apache 2.2, PHP 5.1, DRBD

Tested Plug-ins: Plugin architecture, Thold, Haloe, settings
Other plugins may work

Other modifications: 1 minute polling intervals, 60 days of 1-minute data

Tested OS: CentOS 5

Purpose

To provide a scalable, redundant, modular architecture for large-scale
cacti polling. This cluster is meant to provide continuous polling of all elements
during a partial cluster/grid outage. It is also meant to provide a linear
measurement of elements per node scalability to guarantee all elements are
polled in less than 60 seconds. This architecture is not for the faint of heart to
install. This guide also assumes that you are fluent with unix; it is not meant to
hold your hand through every step.

Abstract

The theory behind the cacti cluster/grid is that the total number of hosts
polled would be divided up equally amongst the active nodes within the
cluster/grid, therefore allowing modular scalability of elements.

The database replication / redundancy would have to be a multi-way,
real-time replication scheme - this will be provided using either MySQL cluster
package or master-master MySql replications. The core files (round-robin
database, etc) will have to remain in sync at all times - in order to keep them
synchronized real-time a shared storage solution will be required. Ideally, a
shared storage (HP MSA500 or MSA1000) or SAN using GFS would provide this
functionality. For a more cost-effective solution, DRBD can be used to replicate
this data over IP in real-time - but this limits storage access to two nodes, unfil
shared via GNBD. Disk I/O will become one of the most critical parts of the
cluster's success. |IP-based storage will typically not yield the best performance.
A load-balancer would be used in front of the cluster nodes to provide a VIP
between all the nodes (and handle client requests). Cisco CSS, SLB, and other
open-source solutions are available for this functionality.

Optional nodes for

- scalabilit
s Y ' -
- S
- ' ~
- -
e \ ,
s | | i
; 4 | l Mysqgl cluster or master- | 1 b
; I master replication is used for | | | M
; Y database synchronization I :
/ | (except for poller* tables) Lo !
I | ‘h | i :
/ \ / Dedicated back-end |
1B switched bus |
: \ \?hared slorage (ie, msa 5-DCI.‘1EI.I$_J_Q,'|" e s |
—
| U B i Rai))) f
m id 0+1 RRD files and php sessions |
'i] " [| are stored on shared storage I
| or SCSI conneclions and accessed via GFS [
| f’
! 1
II.I - - {
\ NDBD Two nodes must act as
\ the NDED manager
] -/ A
v . MySQLd ‘Q: J nade to provide MySQL
\) Apache L J cluster arbitration
"\. - PHP S /
\ B Cacti = !"
Y
5 ,j
A £
A - ~ -
Virtualization layer (via content switch, eic)

Least-connected load-balancing
algorithm is recommended

Usar-Side
Virtual IP {load-balanced)

Core/Minimum components:

Formula for nodes required for cluster/grid:

S = sustainable number of hosts per polling cycle, per node, with an average of

30 elements per host.
This is dependent on the speed/type of processor, number of processors,

number of threads, etc. You should allow for space within the polling cycle for
fimeouts, etc. Here are some guidelines per processor:

3.0ghz = 50 hosts
Nodes = 1 + (S / total number of elements)

Note: The above formula factors in an additional node to ensure all the
elements can be polled during a failure of one node.

The cluster/grid is dependent upon shared storage that will store all the round-
robin databases and session pointers (for apache/php). The storage should be
on RAIDO + 1 (striping + mirroring) array — our system ran on 14 disks on a HP
MSAT1000 array with 2Gb fiber-channel connections. Our previous system ran on
a HP MSAS500 with SCSI connections.

The nodes will run all the normal components of a cacti system — Apache, PHP,
Mysqgl. These nodes will run either MySgl MAX with clustering instead of normal
MySqal or Mysgl master-master replication. Also, they will run the “cluster-
patched’ version of cacti, which includes polling/keepalive scripfs.

All the nodes will have to run snmpd - to provide accurate real-time status to
the cluster-status web page. The apache server will be used to exchange
keepalives between the nodes and determine states of various processes. They
update the 'cluster_nodes' table which determines which nodes will do polling
for what hosts.

There would be a dedicated 1GB/s switched network bus between all the
nodes. In larger deployments, other options can be used for MySQL replication
i.e. SCl or infiniband. On a side note, two of the nodes will have to run
nbbd_mgmd, which is the management process for the NDBD storage engine on
the MySQlL cluster.

Recommended hardware list:

- 2 X Application nodes

- 2x3.0ghz+ CPUs, 4GB RAM, 2 x 1000baseT NICs, hardware RAID O + 1
recommended.

- 64-bit CPU(s) even better, and/or a dual-core.

- 1 x shared storage array with 2+ connections (l.e. MSA500 or MSA 1000)

- Load-balancing switch / device
- These document uses Cisco SLB with redundancy. There are other
alternatives (including some open-source ones), but VIP redundancy is
required.

- Dedicated 1GB/s switch is recommended (low-latency i.e. cisco 4948 is
recommended); if there are two nodes, a crossover cable will work -
otherwise a VLAN will suffice. 1GB/s is a must.

Theory of operation:

Nodes that are attached to shared storage will need linux cluster
package that include CMAN, GFS, etc. CentOS offerers these packages in their
“plus” section.

On bootup, the cluster nodes auto-mount /mnt/(storage)/ and directories
to the shared storage (this is typically accomplished via GFS service). Two
directories are symbolically linked to this storage - (cacti_dir) /rra
and /var/lib/php/session (php session dir). Then the httpd process starts and it
will use the files located on these mounted/linked partitions.

Every 60 seconds, all nodes in the cluster will run a “keepalive’ script which
will query the ‘cluster_nodes’ table in the cacti database on the local box. The
table will contain all the information for each node in the cluster including
name, ip addresss, uptime, node order, status, etc. For each node, this script will
then do a ping and http get to each other's cluster status page. Based on
positive outcomes of all the tests, it will declare each node alive and then insert
the status and uptime into the database. Once the poling is complete, the
script will then query the table for alive nodes, and then order them based on
name.

The order of the nodes comes into play when the poller.php script needs
to determine what elements are polled by each node. Each node will run the
poller.php script (cluster-modified) every minute (as a normal cacti box will run).
The poller script then checks the cluster_nodes tables to see what order it is in,
and use this number as a multiple. For example, if a node is number three out of
four alive nodes, and there are 200 hosts that need to be polled by cacti, this
node will poll hosts 101-180. If the current cluster status is down (or it cannot
query the mysqgl database) it will not poll anything. The poller script requires use
of cactid, as it is the fastest polling method available and natively multi-
threaded. It is recommended that the cactid is configured with multiple
processes (up to 100 if the box can handle it), even if there is only one processor
in the cluster node (this is configured via the cacti gui console-> settings -> poller
-> Max threads per process).

Installation

You should determine your storage architecture and install appropriate
components. DRBD can be found at http://www.drbd.org or installed with
many package managers (yum on centos if Plus repository is enabled, apt-get
on ubuntu, etc). GFS and clustering can be installed with centos during normal
install operation.

http://www.drbd.org/

You can test by mounting your shared storage and make sure it is writable
on all nodes — and newly created files are visible on all nodes.

Large amounts of RAM is a MUST. The MySQL cluster stores all data in
memory for fast replication and access, and Linux caches various data it uses
(i.e. rd data) so you must have at least 2GB of RAM in each node. Note that it is
possible to create a highly distributed architecture utilizing separate machines
for the NDBD storage engine, MySQL services, HTTP service, etc; but this
installation guide will not cover that architecture.

The recommended installation procedure for the nodes will be to build
one box and mirror the hard drive. These nodes should have a version of linux
(CentOS 5 recommended) that includes snmpd, apache, PHP, and php-mysal
libraries (you can install these separately if you wish.) There should also be a
complier installed (for cactid, etc). MySQL should be downloaded from the
MySQL website since you will need the MAX version for clustering (we tested with
pre-complied RPMS, but you can compile if you like). You may have to do a
‘forced’ RPM installation/upgrade because of PHP dependencies. You should
do preliminary cluster, gfs, and mysgl configuration now. Then you will have to
mirror your drive at this point and start configuring the nodes seperatly.

Mysql - option 1 - mysql cluster

Pros: synchronous replication, N-way scalability

Cons: slow startup, slower queries, recovery can be difficult, static limits on
table rows, etc
Example: http://dev.mysqgl.com/tech-resources/articles/mysqgl-cluster-for-two-
servers.html

Mysqgl NDBD nodes should be configure with 1 replica per node, so the
mysq|l cluster can survive with one node. You will also need to run ndib_mgmd
for the MySQL NDBD storage engine arbitration on two nodes (one primary, one
backup) — this is described in the mysql cluster installation guide. It should run
the ndb_mgmd process as a service.

When using mysql clustering, the table type that will be replicated will
have an engine type of NDBCLUSTER. The poller* tables will remain as type
myisam as this data must remain local to each node.

Going forward, you should make sure your mysqgl cluster is working (as
described in the cluster install doc — create a table on one node and make sure
it is visible on the other). You should also create a startup script for the NDBD
process and make sure it starts up before MySQL; or incorporate it intfo the
MySQlL startup script (as described in the mysql cluster install doc).

http://dev.mysql.com/tech-resources/articles/mysql-cluster-for-two-servers.html
http://dev.mysql.com/tech-resources/articles/mysql-cluster-for-two-servers.html

Please note that if you plan on upgrading an existing installation of cacti,
please see appendix A. You will first have to create the database on all nodes
(‘'mysgladmin create cacti’). Then you need to use the SQL script
‘cacti.cluster.sgl’ included in the distribution to create the tables. |.E. 'mysql
cacti < cacti.cluster.sgl’. You will have to run this script only on one box if you
have installed mysql cluster. Then you will have to run the per-node SQL script
‘cacti_cluster_node.sql’ to create the temporary poller tables on each node.

Mysql - option 2 - master-master cluster
Pros: very fast startup and fast queries
Cons: scalability becomes difficult past two nodes
Example: http://www.howtoforge.com/mysgl master master replication

Master-master replication will require that you filter/block replication for all
the poller” tables, as this data must be per-node. There are various master-
master monitoring packages available to monitor the replication. If you want to
scale past two nodes, you will need to setup table types of ‘proxy' (except for
poller® tables) and point them to a VIP between your two mysgl master-master
nodes.

You can create the database & tables on each node using the normal
cacti.sgl script. If you are trying to do this with an existing installation, you should
replicate tables as described in the above master-master replication guide.

Cacti installation

Make sure apache and PHP and working, etc. Then you will need to
symbolically link (cacti_dir)/rra and /var/lib/php/session to your shared storage.
You can rename the original directories or empty them altogether.

Now you can proceed to install the cluster-patched version of cacti.
Once the database had been loaded, you can bring up the web interface
using one box, and configure the nodes. Go to console -> cluster and add the
nodes. Note that the "hosthname’ of the nodes should match the output of the
command ‘hosthname’ in order to work properly. This page does a real-time poll
of the processes via snmp every time you refresh it, so you will know immediately
if there is a problem. If you are not getting a response from a specific node,
make sure snmpd is running properly on that node and configured properly. At
this point you should configure cron with the keep-alive script for the cluster
(cacti_root)/cluster/check_cluster.http.php which will run every 60 seconds on
every node - this script will determine the cluster status, order, etc by parsing the
‘clustat.php' file from each node.

http://www.howtoforge.com/mysql_master_master_replication

Once all the nodes show a ‘green’ status, you are ready to start the
polling process. It isrecommended that you set logging level to ‘debug’ on the
cacti GUI, and run the poller script manually for the first fime (‘php
(cacti_din/poller.php’) and watch the output. Then you should look over the
log file to see if there were any issues. You should do this on every node. When
you run the poller script manually, you should see the current node’s cluster_id.
After you are happy with the results, you can configure cron in the normal
fashion and have it do the poll every minute. If you did an upgrade, you should
copy your old rrd files now.

The final step is to configure your front-end load-balancer which will
present the cacti nodes to the client with one IP address. The load-balancer will
almost double your client-side performance because it should direct each http
request (even each image request) to a separate node, providing a noticeable
performance improvement on the client-side. We have tested this with a Cisco
|IOS SLB — here is a snapshot of the configuration.:

ip slb natpool CACTINAT 10.1.2.251 10.1.2.251 netmask 255.255.255.0
!
ip slb probe CACTI http
port 80
intferval 30
!
ip slb serverfarm CACTI-SRV
nat server
predictor leastconns
nat client CACTINAT
failaction purge
probe CACTI
!
real 10.1.2.71
faildetect numconns 3
inservice
|
real 10.1.2.73
faildetect numconns 3
inservice
I
ip slb vserver CACTI-VIP
virtual 10.250.1.2 tcp www
serverfarm CACTI-SRV

inservice
!

Once you have successfully configured your load-balancer, you should
e all done!

Monitoring

The cluster-patch version of cacti has a “cluster’ tab on the console page
which provides a simple interface to view the real-time status of each cacti
cluster node. It also provides an interface to configure the cluster nodes. Email
alerts are to be added to the various scripts. Log file is under
(cacti_root)/log/check_cluster.log

For MySQIL cluster monitoring, you should use ‘ndb_mgm’ on the arbitrator
node to view the status of the NDBD client engines and MySQL clients. You may
need to purge sessions if a node disconnects uncleanly.

Caveats

In theory, this setup would allow for a partial failure within the cacti
monitoring architecture, and allow for a consistent collection of data. In some
certain circumstances there may be unrecoverable dataloss. For example,
since the keepalive script only runs every 60 seconds, it may be possible to lose
a portion of the data since there may be an unknowingly dead node that is
supposed to poll a set of data, but is offline so it cannot. This would mean that in
theory only one sample of data would be lost for a specific set. Also, it may be
possible for further complications to arise if there are not enough nodes to poll
all the data with the polling period.

Dataloss could also occur if there are issues with your shared storage, so
you should test various failure scenarios and their impact on recovery and
performance.

Other issues may come up when clusters are brought down unexpectedly
and may require manual recovery of mysq|l clustering / replication.

Bottlenecks will be either in the form of Disk I/O or CPU utilization - so
hardware may be the only solution in some circumstances.

With this architecture and 2 x nodes, we were able to poll 200 hosts, 6000
elements in 30 seconds with both nodes active. Linear scaling is would theorize
double scalability with fwice the amount of nodes. This architecture could
theoretically scale to 1600 hosts, 36000 elements if the interval is left at 5 minutes
with two nodes.

Minor changes were made to Haloe plugin to ensure only one node did
haloe post-processing (last node).

You must also remember to manually synchronize new/custom files
between nodes (l.e. xml files, scripts etc)

Other performance suggestions are to increase firefox settings (using
about:config) such as network.http.max-connections-per-server, etc.

Other things to do: alerting on failures

Appendix A: Upgrading previous install to MySQIL cluster-based

WARNING: please do not attempt to use a production box for this upgrade.
You should always setup the cluster apart from what you have in production so
you have a roll-back plan. This is only for MySQL clustering, not master-master
replication.

This first step is to dump your sgl tables from your existing database. You can do
this with ‘'mysqgldump —opt cacti > cacti_orig.sgl’ . Then you will need to do a
replace on the database type: ‘replace ENGINE=MYSAM ENGINE=NDBCLUSTER -
- cacti_orig.sql’. Then use this SQL script to build the database on the cluster
(only on one of the nodes).

You will also have to copy the RRD files over from the original box, but it is
recommended that you do this once the cluster is fully operational. Then you
will have to run the per-node SQL script ‘cacti_cluster_node.sql’ to create the
temporary poller tables on each node.

